# The Structure of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ : A Structure with a Distorted Fluorite Type Arrangement of Atoms 

J. H. Lin, M. Z. Su<br>State Key Laboratory of Rare Earth Materials Chemistry and Applications, Department of Materials Chemistry, Peking University, Beijing 100871, People's Republic of China

K. Wurst

Institut für Allgemeine und Anorganische Chemie, Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
E. Schweda ${ }^{1}$

Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany
Received November 8, 1995; in revised form May 29, 1996; accepted June 3, 1996


#### Abstract

Very small colorless crystals of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ were grown from $\mathrm{La}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$. The composition found by the structure determination corresponds to $\mathrm{La}_{3} \mathrm{BO}_{6}$ with a slight excess of $\mathrm{La}_{2} \mathrm{O}_{3} . \mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ crystallizes in the monoclinic space group $P 2_{1} / c$ with the lattice constants $a=692.0(1) \mathrm{pm}, b=1292.3(1)$ $\mathrm{pm}, c=1457.1(1) \mathrm{pm}$, and $\beta=99.41(1)^{\circ}$. Its structure consists of fluorite slabs in which the lanthanum atoms have a cubic coordination and lanthanum atoms in a square antiprismatic coordination. This square antiprismatic polyhedra are connected by the borate groups. © 1996 Academic Press, Inc.


## 1. INTRODUCTION

It has been known that three binary compounds exist in the $\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{La}_{2} \mathrm{O}_{3}$ system, $\mathrm{LaBO}_{3}, \mathrm{LaB}_{3} \mathrm{O}_{6}$, and $(\mathrm{LaO})_{3} \mathrm{BO}_{3}$ (1,2). Among these compounds, the crystal structures of $\mathrm{LaBO}_{3}$ and $\mathrm{LaB}_{3} \mathrm{O}_{6}$ are well established, though the structural characterization of these compounds was complicated by their polymorphic nature (3). For the structure of $(\mathrm{LaO})_{3} \mathrm{BO}_{3}$ little was known from the pioneer investigations by S. F. Bartram in the 1960s (2). Bartram has determined the space groups of $(\operatorname{LnO})_{3} \mathrm{BO}_{3}(\mathrm{Ln}=\mathrm{La}$ to Lu ) by Weissenberg techniques and refined the lattice constants from X-ray powder diffraction patterns. These compounds crystallize with unit cells in two different monoclinic space groups, i.e., $P 2_{1} / c$ for $L n=\mathrm{La}$ to Nd , $C 2 / m(\mathrm{C} 2, \mathrm{Cm})$ with $Z=6$ for $L n=\operatorname{Pm}$ to Yb , and $C 2 / m$ with $Z=8$ for $L n=\mathrm{Lu}$.

Recently, considerable interest for these compounds was stimulated by the potential application as the hosts of lumi-

[^0]nescent materials $(4,5)$. We now report a single-crystal study on $(\mathrm{LaO})_{3} \mathrm{BO}_{3}$ in which we found that the actual composition is not $(\mathrm{LaO})_{3} \mathrm{BO}_{3}$ but instead $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$.

## 2. EXPERIMENTAL

Polycrystalline samples of the rare earth borate $\mathrm{La}_{26}$ $\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ were prepared by using stoichiometric amounts of $\mathrm{La}_{2} \mathrm{O}_{3}$ of over $99.99 \%$ purity and analytical grade $\mathrm{H}_{3} \mathrm{BO}_{3}$ as starting materials. After preheating at $850^{\circ} \mathrm{C}$ for 6 h , these samples were ground and reheated from 1250 to $1350^{\circ} \mathrm{C}$ for 12 h in air or in a crucible covered with graphite powder. The samples were confirmed to be pure by X-ray powder diffraction. The measurements were carried out on a Rigaku D/MAX-2000 diffractometer using $\mathrm{CuK} \alpha$ radiation from a rotational anode. Colorless single crystals of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ were grown by annealing in an alumina crucible on air at $1350^{\circ} \mathrm{C}$.

## 3. STRUCTURE DETERMINATION

The structure determination of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ was performed on several single crystals of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$. A very small single crystal was examined by BUERGER precession techniques at room temperature. From the photographs the monoclinic space group $P 2_{1} / c$ was derived with the same lattice constants for the unit cell as observed in the diffractometer measurement $a=692.0(1) \mathrm{pm}, b=$ 1292.3(1) pm, $c=1457.1(1) \mathrm{pm}$, and $\beta=99.41(1)^{\circ}$. Even on overexposed films ( 40 h ) no superstructure was observed. One crystal $(0.24 \times 0.18 \times 0.1 \mathrm{~mm})$ was examined on a SIEMENS P4 diffractometer with a graphite monochromator using $\operatorname{Mo} K \alpha(\lambda=71,073 \mathrm{pm})$ radiation and a
$\omega$-scan in a $\Theta$-range between $4.08^{\circ}$ and $26^{\circ}$. The data were corrected for Lorentz and polarization effects. After sorting and merging, 2497 reflections were used to refine 122 parameters. The structure was solved using direct methods and full matrix least squares on $F^{2}(7,8)$. A $\Psi$-scan absorption correction was applied to the data. At an $R$-value of $11.5 \%$ the metal atoms have been refined with anisotropic temperature factors. Because of strong absorption effects only isotropic temperature factors could be refined for the oxygen atoms. However, the isotropic temperature factor of $\mathrm{O}(13)$ was rather high which indicated a lower occupancy for $\mathrm{O}(13)$ on this site. With a site occupation factor of 0.75 the temperature factor becomes normal with a value of $U_{\text {eq }}=8(2)$ for $\mathrm{O}(13)$. This corresponds to a composition $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ which is required for charge neutrality. From the structure determination we have no indication for an $\mathrm{OH}^{-}$group on this $\mathrm{O}(13)$ position. The final $R$ value was $R=0.0418$ (for $I>2 \sigma I$ ) (9). Parameters are given in Tables 1-3.

## 4. RESULTS AND DISCUSSION

The asymmetric unit of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ consists of seven lanthanum atoms of which $\mathrm{La}(1)$ is on the special Wyckoff position 2 b while the others are on the general position 4 e . Thirteen oxygen atoms and two boron atoms are on the general position 4 e . The asymmetric unit contains two crystallographically independent $\mathrm{BO}_{3}^{3-}$ groups. Both borate groups consist of a boron atom triangularly coordinated by oxygen atoms; bond distances $\mathrm{B}-\mathrm{O}$ are at a mean value of 137 pm (Table 4). This is a little smaller than the sum of the covalent radii ( 148 pm ) but about the mean value for such a triangularly coordinated boron (10). All angles are close to $120^{\circ}$. Three different sets of La-O distances are observed, La-O distances with a mean value of 245 pm , distances with a mean value of 263 pm for the oxygen atoms belonging to a borate group, and distances between 275 and 295 pm where the oxygen atoms can still be considered in the coordination sphere of lanthanum.

The lanthanum atoms occupy different coordination polyhedra. $\mathrm{La}(1), \mathrm{La}(4)$, and $\mathrm{La}(6)$ are in a cubic coordination. $\mathrm{La}(1)$ is coordinated by two borate groups occupying four corners of the cube and four $\mathrm{O}^{2-}$ ions (Table 4). $\mathrm{La}(4)$ is coordinated by one borate group occupying two corners of the cube and $6 \mathrm{O}^{2-}$ ions, and $\mathrm{La}(6)$ is coordinated by three $\mathrm{BO}_{3}^{3-}$ groups on five corners of a rather distorted cube and three $\mathrm{O}^{2-}$ ions. $\mathrm{La}(2)$ and $\mathrm{La}(3)$ are in a sevencoordinated environment. The seven corners of the coordination polyhedra are occupied by five $\mathrm{O}^{2-}$ ions and one oxygen atom of each of the two coordinating borate groups. Such coordination polyhedra are known from the Baddeleyite type structure in $\mathrm{ZrO}_{2} . \mathrm{La}(5)$ has a quadratic antiprismatic coordination with four oxygens belonging to borate groups and $4 \mathrm{O}^{2-}$ ions (Fig. 1). $\mathrm{La}(7)$ is also seven

TABLE 1
Crystal Data and Structure Refinement for $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$

| Molecular formula | $\mathrm{B}_{8} \mathrm{La}_{26} \mathrm{O}_{51}$ |
| :--- | :--- |
| Formula weight | 4514.16 |
| Crystal system | Monoclinic |
| Space group | $P 2_{1} / c$ (No. 14) |
| Unit cell dimensions | $a=692.0(1) \mathrm{pm}, \alpha=90^{\circ}$ |
|  | $b=1292.3(1) \mathrm{pm}, \beta=99.41(1)^{\circ}$ |
|  | $c=1457.1(1) \mathrm{pm}, \gamma=90^{\circ}$ |
| Volume | $1.2855(2) \mathrm{nm}^{3}$ |
| $Z$ | 1 |
| Temperature | $293(2) \mathrm{K}$ |
| Radiation | $\mathrm{Mo} K \alpha(\lambda=71.073 \mathrm{pm})$ |
| Density (calculated) | $5.831 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $21.168 \mathrm{~mm}^{-1}$ |
| $F(000)$ | 1930 |
| Color, habit | Colorless block |
| Crystal size | $0.24 \times 0.18 \times 0.1 \mathrm{~mm}$ |
| $\theta$ range for data collection | 4.08 to $26.00^{\circ}$ |
| Index ranges | $-3 \leq \mathrm{h} \leq 8,-1 \leq \mathrm{k} \leq 15,-17 \leq l \leq 17$ |
| Reflections collected | 3713 |
| Independent reflections | $2508\left(R_{\text {int }}=0.0427\right)$ |
| Reflections with $I>2 \sigma(I)$ | 2024 |
| Absorption correction | $\psi$-scan |
| Max. and min. transmission | 0.388 and 0.138 |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data/restraints/parameters | $2497 / 0 / 122$ |
| Goodness-of-fit on $F^{2}$ | 1.066 |
| Final $R$ indices $[I>2 \sigma(I)]$ | $R 1=0.418, \mathrm{w} R 2=0.0978$ |
| $R$ indices (all data) | $R 1=0.0589, \mathrm{w} R 2=0.1192$ |
| Extinction coefficient | $0.00194(11)$ |
| Largest diff. peak and hole | 2630 and $-2934 e \mathrm{~nm}{ }^{-3}$ |

Diffractometer used Monochromator Scan type
Scan speed
Scan range ( $\omega$ )
Standard reflections
Data collection
Siemens P4
Highly oriented graphite crystal
$\omega$
Variable; $6.0^{\circ}$ to $35.0^{\circ} / \mathrm{min}$. in $\omega$ $0.8^{\circ}$
3 measured every 100 reflections
Solution and refinement
System used
Solution
Weighting scheme
SHELXS-86 (Sheldrick, 1990), SHELXL-93 (Sheldrick, 1993)
Direct methods
Calc $w=1 /\left[\sigma^{2}\left(F \mathrm{o}^{2}\right)+(0.0510 P)^{2}\right.$
$+16.7349 P]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
coordinated, i.e., one borate group occupying two corners, two borate groups occupying one corner each, and three $\mathrm{O}^{2-}$ ions on the remaining corner. The bond valence sums for the lanthanum atoms and the oxygen atoms are as expected.

A close inspection of this structure reveals a certain relationship to the $\left(\mathrm{CaF}_{2}\right)$ fluorite structure, both from the structure and the composition point of view. At first sight, neglecting the boron atoms in the structure, the composition will be close to " $\mathrm{LaO}_{2}$ " $\left(\mathrm{La}_{26} \mathrm{O}_{52-x} \mathrm{~B}_{8}\right)$. Furthermore the structure of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ can be considered as a

TABLE 2
Atomic Coordinates and Equivalent Isotropic Displacement
Parameters $\left(\mathrm{pm}^{2} \times 10^{-1}\right)$ for $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$

|  | $x$ | $y$ | $z$ | $U(\mathrm{eq})$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{La}(1)$ | 0.0000 | 0.0000 | 0.0000 | 8(1) |
| $\mathrm{La}(2)$ | 0.5149(1) | 0.1099(1) | 0.0873(1) | 9(1) |
| $\mathrm{La}(3)$ | 0.1518(1) | 0.1942(1) | 0.4691(1) | 10(1) |
| $\mathrm{La}(4)$ | 0.6841(1) | 0.3854(1) | 0.0603(1) | 13(1) |
| $\mathrm{La}(5)$ | 0.6251(1) | 0.3004(1) | 0.3402(1) | 9(1) |
| La(6) | 0.2308(1) | 0.5023(1) | 0.1718(1) | 15(1) |
| $\mathrm{La}(7)$ | 0.0602(1) | 0.2129(1) | 0.2022(1) | 11(1) |
| $\mathrm{O}(1)$ | 0.0088(14) | 0.8507(7) | 0.1306(6) | 14(2) |
| $\mathrm{O}(2)$ | 0.1586(14) | 0.5093(7) | 0.3473(6) | 13(2) |
| $\mathrm{O}(3)$ | 0.2673(15) | 0.3497(7) | 0.2930(6) | 17(2) |
| $\mathrm{O}(4)$ | 0.4266(14) | 0.1320(7) | 0.2586(6) | 13(2) |
| $\mathrm{O}(5)$ | 0.5940(17) | 0.4545(8) | 0.2119(7) | 25(2) |
| O (6) | 0.1623(15) | 0.0676(8) | 0.3268(6) | 19(2) |
| $\mathrm{O}(7)$ | 0.1641(13) | $0.1539(7)$ | 0.0693(6) | 11(2) |
| $\mathrm{O}(8)$ | 0.3424(14) | 0.5545(7) | 0.5477(6) | 12(2) |
| $\mathrm{O}(9)$ | 0.7306(15) | 0.2367 (7) | 0.1816 (7) | 17(2) |
| $\mathrm{O}(10)$ | 0.0366(14) | 0.3630(8) | 0.1061(6) | 16(2) |
| $\mathrm{O}(11)$ | 0.4843(15) | 0.2483 (7) | 0.4813(6) | 17(2) |
| $\mathrm{O}(12)$ | 0.1871(14) | 0.6544(7) | 0.0893(6) | 13(2) |
| O (13) | 0.3452(17) | 0.4553(9) | 0.0341(7) | 8(2) |
| B(1) | 0.1349(22) | 0.4007(11) | 0.3367(9) | 9(3) |
| B(2) | 0.3296(23) | 0.0513(12) | 0.2903(10) | 13(3) |

Note. $U(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.
distorted version of the fluorite structure. To emphasize this feature one of the "fluorite" layers with a stacking sequence $\mathrm{O}-\mathrm{La}-\mathrm{O}$ is presented in Fig. 2. The sheets are oriented perpendicular to the [101] lattice direction (Fig. 3).

The characteristics of a $\mathrm{CaF}_{2}$ structure are anion cubes of which every second is occupied by a metal atom. In Fig. 2 a one sees that $\mathrm{La}(1), \mathrm{La}(4)$, and $\mathrm{La}(6)$ have such a cubic coordination. $\mathrm{La}(2), \mathrm{La}(3)$, and $\mathrm{La}(7)$ have a sevenfold coordination caused by the distortion around $\mathrm{La}(5)$.

TABLE 3
Anisotropic Displacement Parameters ( $\mathrm{pm}^{2} \times \mathbf{1 0}^{\mathbf{- 1}}$ ) for $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$

|  | $U_{11}$ | $U_{22}$ | $U_{33}$ | $U_{23}$ | $U_{13}$ | $U_{12}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{La}(1)$ | $5(1)$ | $7(1)$ | $14(1)$ | $-1(1)$ | $2(1)$ | $-1(1)$ |
| $\mathrm{La}(2)$ | $4(1)$ | $8(1)$ | $13(1)$ | $0(1)$ | $0(1)$ | $1(1)$ |
| $\mathrm{La}(3)$ | $5(1)$ | $11(1)$ | $14(1)$ | $4(1)$ | $2(1)$ | $2(1)$ |
| $\mathrm{La}(4)$ | $10(1)$ | $12(1)$ | $18(1)$ | $-4(1)$ | $2(1)$ | $-2(1)$ |
| $\mathrm{La}(5)$ | $3(1)$ | $9(1)$ | $16(1)$ | $-1(1)$ | $1(1)$ | $-1(1)$ |
| $\mathrm{La}(6)$ | $11(1)$ | $14(1)$ | $19(1)$ | $7(1)$ | $-3(1)$ | $-4(1)$ |
| $\mathrm{La}(7)$ | $7(1)$ | $13(1)$ | $13(1)$ | $0(1)$ | $1(1)$ | $2(1)$ |

Note. The anisotropic displacement factor exponent takes the form $-2 \pi^{2}\left[\left(h a^{*}\right)^{2} U_{11}+\cdots+2 h k a^{*} b^{*} U_{12}\right]$.

TABLE 4
Interatomic Distances in $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ Given in pm

| $\mathrm{La}(1)-\mathrm{O}(7)$ | $242.7(9)$ | $\mathrm{La}(2)-\mathrm{O}(11)$ | $238.3(9)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{La}(1)-\mathrm{O}(7)$ | $242.7(9)$ | $\mathrm{La}(2)-\mathrm{O}(8)$ | $244.8(8)$ |
| $\mathrm{La}(1)-\mathrm{O}(8)$ | $246.0(9)$ | $\mathrm{La}(2)-\mathrm{O}(8)$ | $245.9(9)$ |
| $\mathrm{La}(1)-\mathrm{O}(8)$ | $246.0(9)$ | $\mathrm{La}(2)-\mathrm{O}(7)$ | $246.5(9)$ |
| $\mathrm{La}(1)-\mathrm{O}(2)$ | $263.9(8)$ | $\mathrm{La}(2)-\mathrm{O}(9)$ | $247.6(10)$ |
| $\mathrm{La}(1)-\mathrm{O}(2)$ | $263.9(8)$ | $\mathrm{La}(2)-\mathrm{O}(2)$ | $264.6(10)$ |
| $\mathrm{La}(1)-\mathrm{O}(1)$ | $270.4(9)$ | $\mathrm{La}(2)-\mathrm{O}(4)$ | $268.0(8)$ |
| $\mathrm{La}(1)-\mathrm{O}(1)$ | $270.4(9)$ |  |  |
| $\mathrm{La}(3)-\mathrm{O}(11)$ | $238.3(10)$ | $\mathrm{La}(4)-\mathrm{O}(11)$ | $238.8(10)$ |
| $\mathrm{La}(3)-\mathrm{O}(10)$ | $238.5(9)$ | $\mathrm{La}(4)-\mathrm{O}(10)$ | $243.8(10)$ |
| $\mathrm{La}(3)-\mathrm{O}(12)$ | $241.6(10)$ | $\mathrm{La}(4)-\mathrm{O}(13)$ | $246.6(11)$ |
| $\mathrm{La}(3)-\mathrm{O}(7)$ | $244.0(9)$ | $\mathrm{La}(4)-\mathrm{O}(13)$ | $248.3(12)$ |
| $\mathrm{La}(3)-\mathrm{O}(13)$ | $245.0(12)$ | $\mathrm{La}(4)-\mathrm{O}(12)$ | $254.0(8)$ |
| $\mathrm{La}(3)-\mathrm{O}(1)$ | $262.8(9)$ | $\mathrm{La}(4)-\mathrm{O}(5)$ | $255.2(10)$ |
| $\mathrm{La}(3)-\mathrm{O}(6)$ | $265.2(9)$ | $\mathrm{La}(4)-\mathrm{O}(9)$ | $259.5(10)$ |
|  |  | $\mathrm{La}(4)-\mathrm{O}(6)$ | $296.7(10)$ |
| $\mathrm{La}(5)-\mathrm{O}(12)$ | $242.2(9)$ | $\mathrm{La}(6)-\mathrm{O}(12)$ | $229.8(9)$ |
| $\mathrm{La}(5)-\mathrm{O}(8)$ | $247.3(9)$ | $\mathrm{La}(6)-\mathrm{O}(10)$ | $235.4(10)$ |
| $\mathrm{La}(5)-\mathrm{O}(11)$ | $250.6(9)$ | $\mathrm{La}(6)-\mathrm{O}(13)$ | $235.5(10)$ |
| $\mathrm{La}(5)-\mathrm{O}(3)$ | $254.1(10)$ | $\mathrm{La}(6)-\mathrm{O}(5)$ | $256.1(11)$ |
| $\mathrm{La}(5)-\mathrm{O}(1)$ | $258.2(10)$ | $\mathrm{La}(6)-\mathrm{O}(3)$ | $263.1(9)$ |
| $\mathrm{La}(5)-\mathrm{O}(9)$ | $266.5(9)$ | $\mathrm{La}(6)-\mathrm{O}(2)$ | $268.6(8)$ |
| $\mathrm{La}(5)-\mathrm{O}(5)$ | $271.6(11)$ | $\mathrm{La}(6)-\mathrm{O}(6)$ | $285.1(10)$ |
| $\mathrm{La}(5)-\mathrm{O}(4)$ | $273.9(9)$ | $\mathrm{La}(6)-\mathrm{O}(4)$ | $294.5(9)$ |
| $\mathrm{La}(7)-\mathrm{O}(9)$ | $227.2(10)$ | $\mathrm{O}(1)-\mathrm{B}(1)$ | $134(2)$ |
| $\mathrm{La}(7)-\mathrm{O}(7)$ | $230.3(8)$ | $\mathrm{O}(2)-\mathrm{B}(1)$ | $142(2)$ |
| $\mathrm{La}(7)-\mathrm{O}(10)$ | $238.2(9)$ | $\mathrm{O}(3)-\mathrm{B}(1)$ | $137(2)$ |
| $\mathrm{La}(7)-\mathrm{O}(3)$ | $251.1(10)$ | $\mathrm{O}(4)-\mathrm{B}(2)$ | $136(2)$ |
| $\mathrm{La}(7)-\mathrm{O}(6)$ | $262.8(10)$ | $\mathrm{O}(5)-\mathrm{B}(2)$ | $136(2)$ |
| $\mathrm{La}(7)-\mathrm{O}(4)$ | $274.2(9)$ | $\mathrm{O}(6)-\mathrm{B}(2)$ | $137(2)$ |
| $\mathrm{La}(7)-\mathrm{O}(2)$ | $304.7(9)$ |  |  |
|  |  |  |  |

The fact that all of the $\mathrm{BO}_{3}^{3-}$ groups in the structure locate within the distorted block around the $\mathrm{La}(5)$ atom is an evidence that the deviation from the fluorite geometry is mainly due to the short $\mathrm{B}-\mathrm{O}$ bond distance required in


FIG. 1. The square antiprismatic coordination of $\mathrm{La}(5)$ by four $\mathrm{O}^{2-}$-ions and four borate groups.


FIG. 2. A cut showing the fluorite related layer and the deviations of $\mathrm{La}(6)$ and $\mathrm{La}(7)$ from "fluorite" positions. The coordination polyhedra of the lanthanum atoms are shown in both figures close to the [101] direction, in (a) as a bondstick model and in (b) as a polyhedra model.
the $\mathrm{BO}_{3}^{3-}$ groups. In an idealized fluorite structure (Fig. 4) the borate groups fit well on faces of the empty cubes. The structure adopts this by switching one face of the central cube around by $45^{\circ}$. This is exactly the situation around $\mathrm{La}(5)$. The transformation of a cube into a square antiprism is a well-known principle in anion excess fluorite related structures forced by an anion excess (11).

Three borate groups are located in the plane of one quadratic face of the square antiprism (Fig. 2). The fourth $\mathrm{BO}_{3}^{3-}$-group in the coordination of $\mathrm{La}(5)$ is in the upper


FIG. 3. A projection of the unit cell of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ along [010] shows how the $\mathrm{La}(5)$ square antiprisms are connected by $\mathrm{BO}_{3}^{3-}$ groups in the "fluorite"-like layers of the structure.
square face of the square antiprism and cannot be adopted without major distortions in the metal atom lattice by the fluorite structure. This explains the distortion of $\mathrm{La}(6)$ and $\mathrm{La}(7)$ which are long distance from "normal" fluorite positions. Interestingly the distorted blocks centered with $\mathrm{La}(5)$ form a zig-zag chain-like arrangement connected through $\mathrm{BO}_{3}^{3-}$ and $\mathrm{La}(6)$ and $\mathrm{La}(7)$ groups.

In Fig. 4 we tried to reconstruct the distortions from a normal fluorite projection along $[100]_{\text {fuorite }}$. The anion cubes have a regular edge length of 1 . Then the misfit


FIG. 4. An idealized fluorite arrangement of atoms and the effect of filling three of the empty square faces with triangular $\mathrm{BO}_{3}^{3-}$ groups. The fourth $\mathrm{BO}_{3}^{3-}$ group is inserted in the upper face and causes the distortion of $\mathrm{La}(6)$ and $\mathrm{La}(7)$ (arrows). The numbers in the large circles give the type of La atoms. The filled one is $\mathrm{La}(5)$.
between an equilateral triangle with an edge length of unity and the regular position of the corner from the square antiprism is 0.065 , which is negligable. For a borate group with a B-O bond length of 137 pm the distance between the oxygen position will be 237.3 pm , which compares rather well to the 238.9 pm found, e.g., for the $\mathrm{O}(1)-\mathrm{O}(2)$ distance in the coordination of $\mathrm{La}(1)$ while the other $\mathrm{O}-\mathrm{O}$ distances are at a mean value of 295.3 pm .

## 5. CONCLUSION

Previously $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$ was described as $\mathrm{La}_{3} \mathrm{BO}_{6}$ with the remark that the samples contain a small amount of unreacted oxide (12). This structure determination shows that the structures of this lanthanide-borate-compound is more complex than expected. One can assume that the other monoclinic compounds with space group $P 2_{1} / c$, i.e., $L n_{3} \mathrm{BO}_{6}(L n=\mathrm{Pr}, \mathrm{Nd})$, are isostructural to the lanthanum compound $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$. However, it will be rather interesting if the partial occupation on the $\mathrm{O}(13)$-site could be filled in the case of the substitution of some of the $\mathrm{La}^{3+}$ ions by, e.g., $\mathrm{Ce}^{4+}$-ions and if a $\mathrm{La}_{24} \mathrm{Ce}_{2}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{28}$ could be prepared. The structure also provides a simple suggestion of how, from the structural point of view, defects could be inserted into fluorite structures by simply inserting $\mathrm{BO}_{3}^{3-}$-groups into the lattice. This can be studied by the coordination of the $\mathrm{La}(5)$-atom in the structure of $\mathrm{La}_{26}\left(\mathrm{BO}_{3}\right)_{8} \mathrm{O}_{27}$.

## ACKNOWLEDGMENTS

Financial support for this work was received from Fonds der Chemischen Industrie and a travel grant from the DAAD. The support of the National Science Foundation of China is also gratefully acknowledged.

## REFERENCES

1. E. M. Levin, C. R. Robbins, and J. L. Warring, J. Am. Ceram. Soc. 44, 87 (1961).
2. S. F. Bartram, "Proc. 3rd Conf. Rare Earth Res., Clearwater, FL, 1963 [1964]," N.S.A. 17, No. 32035, pp. 165/80.
3. "Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol. V, part A, p. 605.
4. Guo Fengyu and Liu Nianhong, Acta Sci.Nat.Univ.Pekinensis 26, 191 (1990).
5. Guo Fengyu, Liu Nianhong, and Song Zengfu, J. Chinese Rare Earth Soc. 9, 319 (1991).
6. Y. A. Peng, Q. H. Li, J. H. Lin, and F. Y. Guo, J. Chinese Rare Earth Soc., in press.
7. G. M. Sheldrick, "SHELXS-86: Program for Crystal Structure Solutions." Göttingen, 1986.
8. G. M. Sheldrick, "SHELXL-93: Program for Refinement of Crystal Structures." Göttingen, 1993.
9. See FIZ document CSD 404715 for supplementary material: Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany.
10. A. F. Wells, "Structural Inorganic Chemistry," 5th ed., Clarendon, Oxford, 1984.
11. D. J. M. Bevan, J. Strähle, and O. Greis, J. Solid State Chem. 44, 75 (1974).
12. "Gmelin Handbook RE Main," Vol. C 11b, p. 390.

[^0]:    ${ }^{1}$ Author to whom correspondence should be addressed.

